HELL

RELAYS AND RELAY DEVICES PRODUCTS AND APPLICATIONS

INTRODUCTION2
A small component with a big history 4
How HELLA checks and ensures quality 7
ELECTROMECHANICAL RELAYS 8
Explanation and uses 8
Relay types 12
Mini relay 12 V - make contact with holder 13
Mini relay 12 V , make contact without holder 14
Mini relay 12 V , change-over contact with holder 15
Mini relay 12 V , make contact without holder 16
Mini relay 24 V - make contact with holder 17
Mini relay 24 V , make contact without holder 18
Mini relay 24 V , change-over contact with holder. 19
Mini relay 24 V , make contact without holder 20
MICRO RELAY 22
Micro relay 12V, make contact without holder / change-over contact without holder 22
Micro relay 24 V , change-over contact without holder 23
HIGH-POWER RELAY 24
High-power relay 12V, make contact with holder/without holder 24
High-power relay 24V, make contact with holder/without holder 25
BATTERY DISCONNECT RELAY/SOLID STATE RELAY 26
Battery disconnect relay and solid state relay 12 V , make contact 26
Summary of battery disconnect and solid state relays 27
TECHNICAL DATA 28
Technical data of the relays - Overview 28
Climatic and mechanical tests 30
FLASHER UNITS 32
Explanation and uses 32
Test circuits 36
Flasher unit 6V, 4-pole and 12V, 3-pole 38
Flasher unit 12V, 3-pole 39
Flasher unit 12V, 4-pole 40
Flasher unit 12V, 5-pole/6-pole 41
Flasher unit 12V, 6-pole/7-pole 42
Flasher unit 24V, 3-pole/4-pole 43
Flasher unit 24V, 4-pole/5-pole 44
Flasher unit 24V, 6-pole/7-pole 45
Flasher unit 24 V , 11 -pole and $12 / 24 \mathrm{~V}$, 6-pole 46
LED flasher unit 12/24V, 3 -pole; 12V, 4-pole/5-pole and 24 V , 4-pole 47
Overview of flasher unit technical data 48
Legal regulations for flasher units 48
LED indicators and failure control from HELLA 49
The right solution for your vehicle electronics 50
WASH/WIPE INTERVAL CONTROL UNITS 52
Explanation and uses 52
Wash/wipe interval control units 12 V 54
Wash/wipe interval control units 24 V 55
Headlight cleaning system 12V/24V. 56
CLOCK RELAYS 58
Explanation and uses 58
Clock relays 12 V 60
Clock relays 24 V 61
ACCESSORIES 62
Overview 62
SWITCHING AND PLUG MATRICES 64
Circuit diagrams - electromechanical relays 64
Pin diagrams - electromechanical relays 65
Pin diagrams - flasher units 66
Pin diagrams - wash/wipe interval control units 67
Pin diagrams - clock relays 67
Pin diagrams - control units for headlight cleaning systems 67
HELLA ROCKER SWITCHES 68
The new HELLA switch configurator 68
Rocker switch, 3100 series. 70
Switch functions 71

A small component with a big history

Abstract

Relays have been used to remotely control circuits for over 180 years. The technology has proven its reliability millions of times and is today still the first choice for many applications, such as in automotive engineering.

From the telegraph to automotive engineering

\rightarrow The relay owes its name to former times when mail was still carried by horse. At what were known as relay stations, post riders could swap their horses for rested ones. Today, we call an electromagnetic, remotely operated switch a relay.
\rightarrow The American physician Joseph Henry invented the electric relay in 1835. The pioneer in communications engineering used it to send messages from his laboratory to his home. Relays were first used on a larger scale in 1837, as signal amplifiers for Samuel Morse's recording telegraphs. They would later make possible the widespread use of telephones and became a cornerstone of safety in railway engineering. In 1941, Konrad Zuse utilised 2,000 relays in his legendary Z3, the first digital computer. HELLA produced its first automotive relay in 1960.
\rightarrow As electronics matured in the 20th century, the age of the relay was often seen as over; nevertheless, they retain a place in specific applications. The automotive industry, for example, needs relays, since relay functions cannot always be replaced by control units. Only relays make galvanic isolation possible between input and output. Semi-conductors cannot manage this at the moment. The cost advantage relays have over electronic solutions is also unbeatable.
\rightarrow Relays are used in automotive engineering to switch high currents. The engine control unit, for example, is switched by a relay. Because relays are robust and not particularly susceptible to failure, they can be installed near electric devices. They require only low control currents, making small line cross-sections sufficient. The switching and amplifier function of a relay could only be achieved with a lot more effort and a lot less reliability using more "modern" electronics. Another benefit of the relay is that it is quick and easy to replace. These positive characteristics are the reason why relays are still in use. And they ensure that, in the future, relays will still be at home in many vehicles.

Quality relays from HELLA - versatile and reliable

\rightarrow Manufacturing expertise:
HELLA produces more than 100 million units per year at its own facilities - thanks to optimised production at an attractive price and with one of the lowest failure rates in the entire industry.
\rightarrow Flexibility:
Large volumes are produced in a fully automated process, small volumes with semi-automation. This means we are in a position to change over quickly to semi-automatic production. HELLA is able to respond promptly to customer requirements and create new variants in addition to its existing product range at short notice.
\rightarrow OEM customers:
HELLA develops and produces relays for AGCO, Claas, Daimler AG, Ford, VW, GM, JCB, Opel/Vauxhall, Nissan, John Deere, Chrysler, Jaguar/Land Rover and others. Many of our customer relationships have existed for decades.
\rightarrow Production locations:
Berlin (Germany); Flora, Illinois (USA); Xiamen (China).

- Design life tests:

The relays are switched on/off in cycles on fully automated test racks. Original loads or simulated resistive, inductive, capacitive or combined loads whose current characteristics are recorded as the original loads are connected. In addition, the relays can be subjected to different ambient temperature ranges or temperature profiles. The test is continuously documented.

- Electrical parameters:

Within the context of product release, starting voltage, dropout voltage, contact voltage drop, coil resistance and insulation resistance are tested, for example. Accompanying the manufacturing process, the electrical parameters are recorded at the end of the production process by end-of-line testers. These can be evaluated statistically. One important factor for guaranteeing the consistent high quality of the relays produced.

- Environmental and mechanical tests:

Every relay has to pass tests such as the alternating temperature test, salt spray fog test, mechanical shock test or drop test and the vibration test within the context of the product release process. These tests are carried out using HELLA equipment.

- Analytical tests:

Here, the materials used and the different connecting processes such as soldering and welding are tested. The tests are carried out randomly during incoming goods testing and following production.

- Certificates:

HELLA has been certified in a range of relevant areas e.g. DIN EN ISO 9001:2008, ISO / TS 16949:2009, ISO 14001. HELLA relays also comply with the ROHS (2002/95/EC) and REACh standards.

Explanation and uses

Key components of an electromechanical relay

Legend

(1) Contact plates
(2) Armature
(3) Pins for coil wire
(4) Switch contacts
(5) Coil made of Cu wire

Blade terminal (load) made of E-Cu (electrolytic copper)
with tin-plated surface
8 Blade terminal (coil) made of CuZn (brass)
with tin-plated surface
9 Base plate

10 Coil body
(11) Yoke

Iron core (in the coil)

Functional principle

Relays are basically electrically operated switches which use an electromagnet to move a switching mechanism by switching one or more contacts. They are used where one or more load circuits need to be switched on or off by means of a control signal. Characteristic of the electromechanical relay is the complete (galvanic) isolation between the control and controlled circuits.

Make relays

Make relays are used to close an electric circuit between a power source and one or more electrical loads, i.e. the loads are switched on. Relays are operated by means of switches, pulse generators or control devices. Typical vehicle applications are headlights, auxiliary lights and fog lights, horns, heaters, air conditioner systems, etc.

How make relays work

Fig.1) The control circuit (86/85) is inactive and the return spring keeps the armature open. The make contacts are open and the load circuit $(30 / 87)$ is interrupted.

Fig. 2) The control circuit ($86 / 85$) is active and the copper coil induces a magnetic field which pulls the armature down onto the magnetic core. The make contacts are closed and the load circuit (30/87) is therefore also closed.

Change-over relays

Change-over relays switch the load circuit over from one electrical load to another. These relays can be operated

Fig. 2

Rated voltage

$\rightarrow \quad 12 \mathrm{~V}$: for passenger cars, agricultural and construction machinery etc.
$\rightarrow 24 \mathrm{~V}$: for commercial vehicles, buses, municipal vehicles etc.

Rated load

(depending on load type)

\rightarrow Resistive load:

The current remains around the same from switch-on to switch-off (e.g. rear window heater).

\rightarrow Inductive load:

The inrush current increases to the rated current with a specific delay time due to the build-up of the inductor's magnetic field and then levels off (e.g. switching on a solenoid switch). During switch-off, a voltage of up to several thousand volts is (theoretically) induced, resulting in an electric arc between the relay contacts just opened.

Example load curve, inductive load

Example load curve, capacitive/bulb load

Coil circuit

In order to prevent voltage spikes caused by mutual inductance when switching off the coil current, our relays are in part equipped with resistors or diodes parallel to the coil.

Contacts and connector configurations

30	Load current + , terminal 15 (input)
85	Relay coil - (input)
86	Relay coil + (input)
87	Load current, make contact (output)
87 a	Load current, break contact (output)

Relay types

Micro relay

Micro relays according to ISO 7588-3 (1988), blade terminals according to ISO 8092-1.
Contact arrangements: make contact, change-over contact, max. 20 A switching power (make contact), rated voltage: $12 \mathrm{~V}, 24 \mathrm{~V}$
Areas of application include: fuel pumps, air conditioning systems, windshield washer systems, wiper motors.

Solid state relay

Mini semiconductor relays according to ISO 7588-1, blade terminals according to ISO 8092-1.
Contact arrangement: make contact, max. 22 A switching power (make contact), rated voltage: 12 V
Areas of application include: vacuum pumps for brake booster support, daytime running lights.

Battery disconnect relay

Bi-stable electromechanical relay with one or two coils.
Contact arrangement: make contact, max. 180 A switching power, rated voltage: 12 V
Areas of application include: disconnecting the vehicle electric system from the battery in the event of accidents or for maintenance, retain battery charge by switching off quiescent current

Mini relay 12 V - make contact with holder

Product photo	Resistive load				Inductive load				Bulb load						$\begin{aligned} & \bar{\varepsilon} \\ & \stackrel{\rightharpoonup}{0} \\ & \ddot{0} \\ & \stackrel{U}{0} \\ & \stackrel{0}{0} \\ & \stackrel{H}{0} \\ & \overline{0} \end{aligned}$		Part number
		act	$\begin{aligned} & \mathrm{Br} \\ & \text { cor } \end{aligned}$			act				ke	$\begin{gathered} \mathrm{Br} \\ \mathrm{col} \end{gathered}$	act					
	15	100	-	-	15	100	-	-	15	100	-	-	A	S10	85	-	$\begin{gathered} \text { 4RA } 003 \text { 530-001 } \\ \text { with fuse link } \\ 15 \mathrm{~A} \end{gathered}$
	25	100	-	-	25	100	-	-	25	100	-	-	A	S10	85	-	$\begin{aligned} & \text { 4RA } 003 \text { 530-042 } \\ & \text { with fuse link } \\ & 25 \mathrm{~A} \end{aligned}$
	40	100	-	-	35	100	-	-	30	100	-	-	B	S2	100	680	4RA 007 791-021
	50	100	-	-	46	75	-	-	44	100	-	-	B3	S2	100	680	4RA 007 793-041 with 9.5 mm load connections
	40	100	-	-	30	100	-	-	30	100	-	-	B2	S6	85	-	4RA 933 791-061 with dual-output
	40	100	-	-	30	100	-	-	30	100	-	-	B2	S8	85	-	4RA 933 791-091 with dual output and parallel diode
	30	100	-	-	30	100	-	-	15	100	-	-	A	S1	90	-	4RA 965 400-001
	Rated switching current (A) at $80^{\circ} \mathrm{C}$ ambient tem Number of switching operations (thousands)																

Mini relay 12 V , make contact without holder

Product photo	Resistive load				Inductive load				Bulb load						$\begin{aligned} & \bar{\varepsilon} \\ & \stackrel{0}{0} \\ & \ddot{0} \\ & \stackrel{0}{0} \\ & \stackrel{N}{0} \\ & 0.0 \\ & \overline{0} \end{aligned}$		Part number
	Make contact		Break contact		Make contact		Break contact		Make contact		Break contact						
	40	100	-		35	100	-	-	30	100	-	-	B	S2	100	680	4RA 007 791-011
	50	100	-	-	46	75	-	-	44	100	-	-	B3	S2	100	680	4RA 007 793-031 with 9.5 mm load connections
	40	100	-	-	30	100	-	-	30	100	-	-	B	S1	85	-	4RA 933 332-101
	40	100	-	-	30	100	-	-	30	100	-	-	B2	S6	85	-	4RA 933 332-151 with dual-output
	40	100	-	-	30	100	-	-	30	100	-	-	B	S2	85	560	4RA 933 332-211
	40	100	-	-	30	100	-	-	30	100	-	-	B	S3	85	-	4RA 933 332-221 with parallel diode
	30	100	-	-	30	100	-	-	16	100	-	-	A	S1	90	-	4RA 965 400-017
	Rated switching current (A) at $80^{\circ} \mathrm{C}$ ambient tem Number of switching operations (thousands)																

Mini relay 12 V , change-over contact with holder

Rated switching current (A) at $80^{\circ} \mathrm{C}$ ambient temperature
A Number of switching operations (thousands)

* in conjunction with mating connector 8JD 745 801-001/-011

Mini relay 12 V , make contact without holder

[^0]A Number of switching operations (thousands)

* in conjunction with mating connector 8JD 745 801-001/-011

Mini relay 24 V - make contact with holder

Mini relay 24 V, make contact without holder

20	150	-	-	16	100	-	-	16	135	-	-	B	S2	305	1200	4RA 007 957-001

Rated switching current (A) at $80^{\circ} \mathrm{C}$ ambient temperature
A Number of switching operations (thousands)

Mini relay 24 V , change-over contact with holder

Rated switching current (A) at $80^{\circ} \mathrm{C}$ ambient temperature
A Number of switching operations (thousands)

Mini relay 24 V, make contact without holder

20	150	10	100	16	100	10	100	16	135	5	135	B1	W2	305	1200	4RD 007 903-001

20	150	10	100	16	100	10	100	16	135	5	135	B1	W2	305	-	4RD 007 903-021 with parallel diode

20	100	10	100	16	100	8	100	15	135	5	135	B1	W2	350	1200	4RD 933 332-261

Rated switching current (A) at $80^{\circ} \mathrm{C}$ ambient temperature
A Number of switching operations (thousands)

Micro relay 12 V , make contact without holder / change-over contact without holder

20	100	-	-	20	100	-	-	20	100	-	-	C3	L1	2×75	-	4RC 933 364-027
Bi-stable																

20	150	10	150	11	100	11	100	20	100	10	100	$\mathbf{C 1}$	W2	92	470	4RD 007 814-011

35	100	20	100	30	100	10	100	30	100	10	100	$\mathbf{C 1}$	W2	140	1000	4RD 933 319-007 with locating lugs

Rated switching current (A) at $80^{\circ} \mathrm{C}$ ambient temperature
A Number of switching operations (thousands)

Micro relay 24V, change-over contact without holder

Rated switching current (A) at $80^{\circ} \mathrm{C}$ ambient temperature
A Number of switching operations (thousands)

High-power relay 12V, make contact with holder/without holder

Rated switching current (A) at $80^{\circ} \mathrm{C}$ ambient temperature
A Number of switching operations (thousands)

High-power relay 24V, make contact with holder/without holder
Product photo

Battery disconnect relay and solid state relay 12V, make contact

22	1000	-	-	22	1000	-	-	22	1000	-	-	B	SSR1	-	-	4RA 007 865-031

Rated switching current (A) at $80^{\circ} \mathrm{C}$ ambient temperature
A Number of switching operations (thousands)

Summary of battery disconnect and solid state relays

Battery disconnect relay

\rightarrow Disconnects the vehicle electric system from the battery, as a component of vehicle electric system control units and prefuse devices
\rightarrow Battery charge is maintained by avoiding quiescent current: large vehicle electric system parts are switched off during longer periods of vehicle standstill
\rightarrow Voltage to the vehicle electric system or its parts is interrupted for maintenance work
\rightarrow Safety switch-off in the event of an accident or cable damage to avoid fire hazard

Advantages:

\rightarrow Mechanically bi-stable switching unit:
Impulse at the closing coil closes the contacts, these are stopped mechanically, impulse at the opening coil opens the contacts
\rightarrow Contact bridge double breaking
\rightarrow All load circuit components with large cross-section (>30 mm²) for high continuous current carrying capacity
\rightarrow Coil terminal:
2-pole or 4-pole AMP connector

Solid state relay

\rightarrow Semi-conductor relays, designed for resistive, lamp and inductive loads
\rightarrow Pulse width modulation (PWM) makes controlled power regulation of loads (up to 1 kHz) possible
\rightarrow Maximum switching safety, particularly suitable for all safetyrelated switching functions
\rightarrow In terms of design size and plug matrix, compatible with conventional ISO mini relays (standardised dimensions according to ISO 7588-1)
\rightarrow Silent switching e.g. in the passenger compartment
\rightarrow Resistant to short-circuit and excess load
\rightarrow Resistant to reverse polarity
\rightarrow Impact and vibration-resistant
\rightarrow Sealed and waterproof
\rightarrow Overheating protection
\rightarrow Low quiescent current

The solid state relay is a modern semi-conductor switch and makes switching possible without moving parts. It can be connected via standardised pin bases.

With this development, HELLA is doing justice to the increasing trend of controlling loads (e.g. fan motors, glow plugs, headlights and heaters) using power regulation. The increased switching frequency makes continual setting by means of pulse width modulation (PWM) possible e.g. for daytime running lights.

The silent semi-conductor relay is particularly attractive for use inside vehicles. In addition, the wear and bounce-free switching means it can be used for applications with a high number of switching processes e.g. ABS or air-conditioning compressor clutch or vacuum pump for brake booster support in hybrid vehicles made by leading OEMs.

Technical data of the relays - Overview

Mini relays$12 \mathrm{~V}$		Mini relays		Power mini relay	
		24 V		12 V	24 V
$\begin{aligned} & \text { 4RA } 007 \text { 791-... } \\ & \text { 4RD } 007 \text { 794-... } \end{aligned}$	$\begin{aligned} & \text { 4R. } 933332-\ldots \\ & \text { 4RA } 933791-\ldots \\ & \text { 4R. } 965400-\ldots \\ & \text { 4RA } 003530-\ldots \end{aligned}$	4RA 007 957-.. 4RD 007 903-. 4RA 003 530-	4R. 933 332-. 4RA 933 791-.. 4RA 965 400-..	4RA 007 793-...	4RA 933 321-...

General specifications						
Test voltage	13.5 V	13.5 V	27 V	27 V	13.5 V	27 V
Test temperature	$+23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$					
Permissible ambient temperature	$-40^{\circ} \mathrm{C} \ldots+125^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \ldots+125^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \ldots+125^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \ldots+125^{\circ} \mathrm{C}$
Storage temperature	$-40^{\circ} \mathrm{C} \ldots+130^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \ldots+125^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \ldots+130^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \ldots+125^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \ldots+130^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \ldots+125^{\circ} \mathrm{C}$
Flat plug (according to ISO 8092)						
30	$6.3 \times 0.8 \mathrm{~mm}$	$9.5 \times 1.2 \mathrm{~mm}$	$9.5 \times 1.2 \mathrm{~mm}$			
85	$6.3 \times 0.8 \mathrm{~mm}$					
86	$6.3 \times 0.8 \mathrm{~mm}$					
87	$6.3 \times 0.8 \mathrm{~mm}$	$9.5 \times 1.2 \mathrm{~mm}$	$9.5 \times 1.2 \mathrm{~mm}$			
87a	$6.3 \times 0.8 \mathrm{~mm}$	-	-			

Coil specifications						
Rated voltage	12 V	12 V	24 V	24 V	12 V	24 V
Operating voltage range at permissible ambient temperature	$8 \mathrm{~V} . . .16 \mathrm{~V}$	$8 \mathrm{~V} . . .16 \mathrm{~V}$	16 V ... 30 V	16 V ... 30 V	$8 \mathrm{~V} . . .16 \mathrm{~V}$	16 V ... 30 V
Pick-up voltage at test temperature	<8V	<8V	$<17 \mathrm{~V}$	$<15.6 \mathrm{~V}$	$<8 \mathrm{~V}$	< 14.4 V
Drop-out voltage at test temperature	$<1 \mathrm{~V}$	<1V	$>3.5 \mathrm{~V}$	$>3.5 \mathrm{~V}$	$>1.3 \mathrm{~V}$	$<2.4 \mathrm{~V}$
Coil resistance at test temperature without parallel component	$\begin{gathered} 85 / 1000 \mathrm{hm} \\ \pm 10 \% \end{gathered}$	$\begin{gathered} 85 / 90 \text { Ohm } \\ \pm 10 \% \end{gathered}$	$\begin{gathered} 305 / 3150 \mathrm{hm} \\ \pm 10 \% \end{gathered}$	$\begin{gathered} 350 / 360 \text { Ohm } \\ \pm 10 \% \end{gathered}$	$\begin{gathered} 100 \text { Ohm } \\ \pm 10 \% \end{gathered}$	$\begin{gathered} 100 \text { Ohm } \\ \pm 10 \% \end{gathered}$
Response time	$<10 \mathrm{~ms}$					
Drop-out time	$<10 \mathrm{~ms}$	$<7 \mathrm{~ms}$				
Insulation resistance Coil circuit/load circuit	> 100 MOhm					
Breakdown strength Coil circuit/load circuit	> 1000 VDC	> 500 VDC				

Contact details

Contact voltage drop-out at test voltage ...

\ldots Make contact in showroom condition	$<10 \mathrm{mV} / \mathrm{A}$	$<5 \mathrm{mV} / \mathrm{A}$	$<5 \mathrm{mV} / \mathrm{A}$				
... in new state normally closed contact	$<10 \mathrm{mV} / \mathrm{A}$	$<15 \mathrm{mV} / \mathrm{A}$	$<10 \mathrm{mV} / \mathrm{A}$	$<15 \mathrm{mV} / \mathrm{A}$	-	-	
... after service life test normally open contact	$<10 \mathrm{mV} / \mathrm{A}$	$<15 \mathrm{mV} / \mathrm{A}$	$<10 \mathrm{mV} / \mathrm{A}$	$<15 \mathrm{mV} / \mathrm{A}$	$<10 \mathrm{mV} / \mathrm{A}$	$<25 \mathrm{mV} / \mathrm{A}$	
... after service life test normally closed contact	$<10 \mathrm{mV} / \mathrm{A}$	$<20 \mathrm{mV} / \mathrm{A}$	$<15 \mathrm{mV} / \mathrm{A}$	$<20 \mathrm{mV} / \mathrm{A}$	-	-	-
Residual current	$1 \mathrm{~A} / 6 \mathrm{~V}$						
Mechanical design life	10^{7}	10^{7}	10^{7}	10^{7}	10^{7}	10^{7}	

High-power relay		Micro relay			Solid state relay
12 V	24 V	12 V		24 V	12 V
4RA 003 437-...	4RA 003 437-...	4RA 007 813-. 4RD 007 814-. 4RD 933 319-..	4RC 933 364-...	4RD 933 319-...	$\begin{aligned} & \text { 4RA } 007 \text { 865-... } \\ & \text { 4RA } 931 \text { 773-.. } \end{aligned}$

Battery disconnect relay
12 V
4RC 011 152-..

13.5 V	27 V	13.5 V	13.5 V	27 V	
$+23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$					
$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \ldots+125^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \ldots+105^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \ldots+125^{\circ} \mathrm{C}$	13.5 V
$-40^{\circ} \mathrm{C} \ldots+125^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \ldots+125^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \ldots+130^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \ldots+125^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \ldots+125^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}$					

$9.5 \times 1.2 \mathrm{~mm}$	$9.5 \times 1.2 \mathrm{~mm}$	$6.3 \times 0.8 \mathrm{~mm}$			
$6.3 \times 0.8 \mathrm{~mm}$	$6.3 \times 0.8 \mathrm{~mm}$	$4.8 \times 0.8 \mathrm{~mm}$	$4.8 \times 0.8 \mathrm{~mm}$	$4.8 \times 0.8 \mathrm{~mm}$	$6.3 \times 0.8 \mathrm{~mm}$
$6.3 \times 0.8 \mathrm{~mm}$	$6.3 \times 0.8 \mathrm{~mm}$	$4.8 \times 0.8 \mathrm{~mm}$	$4.8 \times 0.8 \mathrm{~mm}$	$4.8 \times 0.8 \mathrm{~mm}$	$6.3 \times 0.8 \mathrm{~mm}$
$9.5 \times 1.2 \mathrm{~mm}$	$9.5 \times 1.2 \mathrm{~mm}$	$6.3 \times 0.8 \mathrm{~mm}$			
-	-	$4.8 \times 0.8 \mathrm{~mm}$	$4.8 \times 0.8 \mathrm{~mm}$	$4.8 \times 0.8 \mathrm{~mm}$	-

2-pole/4-pole AMP, M8/M10 screw bolts

12 V	24 V	12 V	12 V	24 V	12 V	12 V
8V ... 16 V	$16 \mathrm{~V} \ldots 30 \mathrm{~V}$	8V ... 16 V	8V ... 16 V	$16 \mathrm{~V} . .30 \mathrm{~V}$	$8 \mathrm{~V} \ldots 16 \mathrm{~V}$	8V ... 16 V
$<7.5 \mathrm{~V}$	$<17 \mathrm{~V}$	< 8 V	$<6 \mathrm{~V}$	< 14.4 V	$<9 \mathrm{~V}$	$<6.5 \mathrm{~V}$
< 1 V	$>5 \mathrm{~V}$	< 1 V	-	$<2.4 \mathrm{~V}$	< 12.5 V	$>3 \mathrm{~V}$
$\begin{aligned} & 85 \text { Ohm } \\ & \pm 10 \% \end{aligned}$	$\begin{gathered} 310 \text { Ohm } \\ \pm 10 \% \end{gathered}$	$\begin{gathered} 92 / 140 \text { Ohm } \\ \pm 10 \% \end{gathered}$	$\begin{gathered} 2 \times 750 \mathrm{hm} \\ \pm 10 \% \end{gathered}$	$\begin{gathered} 360 \text { Ohm } \\ \pm 10 \% \end{gathered}$	-	$\begin{gathered} 1 \times 2.34 / 2 \times 4.3 \\ \pm 10 \% \end{gathered}$
$<10 \mathrm{~ms}$	$<10 \mathrm{~ms}$	$<10 \mathrm{~ms}$	$<5 \mathrm{~ms}$	$<10 \mathrm{~ms}$	< $150 \mu \mathrm{~s}$	$<20 \mathrm{~ms}$
$<10 \mathrm{~ms}$	$<10 \mathrm{~ms}$	$<10 \mathrm{~ms}$	$<5 \mathrm{~ms}$	$<10 \mathrm{~ms}$	$<75 \mu s$	$<20 \mathrm{~ms}$
> 100 MOhm	-	> 100 MOhm				
> 1000 VDC	> 1000 VDC	> $500 \mathrm{VDC} / \mathrm{VAC}$	> 800 VDC	> 500 VAC	-	> 500 VAC

$<3 \mathrm{mV} / \mathrm{A}$	$<3 \mathrm{mV} / \mathrm{A}$	< $10 \mathrm{mV} / \mathrm{A}$	$<5 \mathrm{mV} / \mathrm{A}$	$<10 \mathrm{mV} / \mathrm{A}$	-	$<2.5 \mathrm{mV} / \mathrm{A}$
-	-	< $10 \mathrm{mV} / \mathrm{A}$	-	$<10 \mathrm{mV} / \mathrm{A}$	-	-
$<10 \mathrm{mV} / \mathrm{A}$	$<10 \mathrm{mV} / \mathrm{A}$	$<25 \mathrm{mV} / \mathrm{A}$	$<10 \mathrm{mV} / \mathrm{A}$	$<25 \mathrm{mV} / \mathrm{A}$	-	$<2.5 \mathrm{mV} / \mathrm{A}$
-	-	< $25 \mathrm{mV} / \mathrm{A}$	-	$<25 \mathrm{mV} / \mathrm{A}$	-	-
$1 \mathrm{~A} / 6 \mathrm{~V}$						
10^{7}	10^{7}	10^{7}	10^{7}	10^{7}	-	2×10^{5}

Climatic and mechanical tests

Vibration test
DIN EN 600 68-2-6; test: Fc (sinusoidal);
$20-200 \mathrm{~Hz}, 5 \mathrm{~g}, 6 \mathrm{~h}$ per axis

Shock test

DIN EN 600 68-2-27; test: Ea (semi-sinusoidal); max. $50 \mathrm{~g}, 11 \mathrm{~ms}, 1,000$ shocks per direction

Corrosion test

DIN EN 600 68-2-42; test: Kc ;
$10 \pm 2 \mathrm{~cm}^{3} / \mathrm{m}^{3} \mathrm{SO}_{2},+25^{\circ} \mathrm{C}, 75 \%$ rel. hum., 10 d

Damp/heat test, cyclic

DIN EN 600 68-2-30, test: Db, variant 1;
Upper temperature: $+55^{\circ} \mathrm{C}$, min. 90% rel. hum., 6 cycles

Damp/heat test, constant

DIN EN 600 68-2-78, test: Cab;
Upper temperature: $+55^{\circ} \mathrm{C}, 93 \%$ rel. hum., 56 d

Temperature cycle test

DIN EN ISO 600 68-2-14, test; Nb;
$-40^{\circ} \mathrm{C} /+85^{\circ} \mathrm{C}\left(5^{\circ} \mathrm{C}\right.$ per minute), 10 cycles

Condensation-water test

DIN EN ISO 6988;
$+40^{\circ} \mathrm{C}, 0.2 \mathrm{dm}^{3} \mathrm{SO}_{2}, 6$ cycles (24 h cycle),
Storage: 8 h per cycle

Protection class

IP54 according to ISO 20653

Explanation and uses

Key components of a flasher unit

Legend

(1) Blade terminal made of E -Cu with tin-plated surface
(2) Base plate
(3) Power transistor
(4) Capacitor
(5) IC module
(6) Measuring resistor for flasher current

Functional principle

\rightarrow In terms of circuitry, every flasher unit is an "astable multivibrator". Its role is to operate blinker lights at the statutory frequency of $1.5+/-0.5 \mathrm{~Hz}$ or $90+/-30 \mathrm{rpm}$. This value applies to both directional and hazard warning lights.
\rightarrow Each flasher unit is assigned a separate output load or a permissible number of flashing indicator lights. This specific load case variant may not be exceeded or undercut, as otherwise the failure control will fail to work correctly. Some typical load cases which are supported are shown below:

Scenario	Direction flashing	Hazard warning flashing	Pictogram
Towcar only	$2 \times 21 \mathrm{~W}$	4×21 W	2x21w
			$4 \times 2 \times 1 \mathrm{w}$
	$2 \times 21 \mathrm{~W}+0 \ldots 5 \mathrm{~W}$	$4 \times 21 W+2 \times 5 W$	[2x21w $+5 w$
			S 4×216
Towcar + 1 trailer	$2+1 \times 21 \mathrm{~W}$	$6 \times 21 \mathrm{~W}$	$2+1 \times 216$
			$\sqrt{6 \times 21 \mathrm{w}} \text { fob }$
	$2+1 \times 21 \mathrm{~W}+0 \ldots 5 \mathrm{~W}$	$6 \times 21 \mathrm{~W}+2 \times 5 \mathrm{~W}$	
	$3+1 \times 21 \mathrm{~W}$	8×21 W	$4-1+1 \times 21 w]$
			$\sqrt{8 \times 2, w}\}[\}$
	$3+1 \times 27 \mathrm{~W}(32 \mathrm{CP})+3 \mathrm{~W}$ (SAE)	$8 \times 27 \mathrm{~W}(32 \mathrm{CP})+2 \times 3 \mathrm{~W}$ (SAE)	-
	$4+1 \times 21 \mathrm{~W}$	$10 \times 21 \mathrm{~W}$	$\square \square_{4+1 \times 210}^{-a}$
			$C_{10 \times 210}^{1020} 5$
Towcar + 2 trailers	$2+1+1 \times 21 \mathrm{~W}$	8×21 W	
			$\text { Exaim } \sqrt[s]{5}$

In addition to the load cases above, there are other use cases which do not feature failure control. These variants can be found in the tabular overview from page 38 on.
\rightarrow The failure of an indicator light must be clearly displayed to the driver. The law permits failure control by doubling the flashing frequency (E-control) or the indicator control lamp remaining off (P-control). The failure control applies to motor vehicles and all trailers.
\rightarrow Segmentation into different current and control circuits is typical of flashing circuits. We distinguish between:

- Single-circuit flasher units
- Dual-circuit flasher units
- Three-circuit flasher units
- Pulse generators
\rightarrow In addition to the flasher circuits listed above, HELLA also supplies pulse generators. In principle, these are flasher units without failure control. In contrast to the above types, pulse generators can be operated with small loads (e.g. 10 W).

Rated voltage

$\rightarrow 6 \mathrm{~V}$: for motorbikes etc.
$\rightarrow 12 \mathrm{~V}$: for passenger cars, agricultural and construction machinery etc.
$\rightarrow 24 \mathrm{~V}$: for commercial vehicles, buses, municipal vehicles etc.

Rated load, rated switching current
 (depending on load case)

\rightarrow The number of connected flashing indicator lamps must not exceed the use cases/rated loads indicated for the respective flasher units
\rightarrow Special-purpose variants available for LED lights

Contacts and connector configurations

Single-circuit flasher unit			Dual-circuit flasher unit	
C	Towcar failure control lamp	L	Indicator, left (input)	
C2	1st trailer failure control lamp	R	Indicator, right (input)	
C3	2nd trailer failure control lamp	LL	Towcar indicator, left	
31	Ground	RL	Towcar indicator, right	
49	Input	C	Towcar failure control lamp	
49a	Output	C2	1st trailer failure control lamp	
		31	Ground	
		49	Input	
		$49 a$	Output	
		$54 L$	Trailer indicator, left	
		$54 R$	Trailer indicator, right	

Three-circuit flasher unit	
L	Indicator, left (input)
R	Indicator, right (input)
LLH	Towcar indicator,
	left rear
LLV	Towcar indicator,
	left front
RLH	Towcar indicator,
	right rear
RLV	Towcar indicator,
	right front
C	Towcar failure control lamp
C2	1st trailer failure control lamp
C3	2nd trailer failure control lamp
31	Ground
49	Input
49a	Output
54L	Trailer indicator, left
54R	Trailer indicator, right

Test circuits

The single-circuit test circuit

Single-circuit units are used in load cases (per 21 W bulb) $2 x, 4 x, 5 x, 2+1,3+1,2+1+1$ for passenger cars, light commercial vehicles and tow vehicles. It is not possible to distinguish between the failure of a lamp on the towcar or on the trailer, as there is only one measuring resistor for the load current.

The dual-circuit test circuit

Dual-circuit units (separate test circuits for trailer and towcar) are typical in large commercial vehicles and help to minimise power losses caused by long cables and numerous connectors

Load case variant		Control types:
$\frac{2+1(6) \times 21 \mathrm{~W} 12 / 24 \mathrm{~V}}{3+1(8) \times 21 \mathrm{~W} 12 / 24 \mathrm{~V}}$	$\frac{\text { Towcar }}{\text { E, P }}$	$\frac{1 \text { st trailer }}{P}$

The three-circuit test circuit

Three-circuit units (separate test circuits for front and rear indicators of the towcar and of the trailer) are useful for commercial vehicles and buses and help to minimise power losses caused by long cables and numerous connectors.

Due to the complexity of wiring, they are less common.

Flasher unit 6V, 4-pole and 12V, 3-pole

[^1]C = Towcar
C2 $=1$ st trailer
C3 $=2$ nd trailer

Flasher unit 12V, 3-pole

[^2]C = Towcar
C2 $=1$ st trailer
C3 $=$ 2nd trailer

Flasher unit 12V, 4-pole

[^3]Flasher unit 12V, 5-pole/6-pole

[^4]Flasher unit 12V, 6-pole/7-pole

Product photo	Load case/rated power				Failure control							Part number
	Direction flashing	warning flashing			C	C2	C3				$\begin{aligned} & \stackrel{\grave{\rightharpoonup}}{\mathbf{0}} \\ & \text { 모 } \end{aligned}$	
(14i) (ϵ вuwxerere cencerian	$\begin{gathered} 2+1 \\ +1 \times 21 \mathrm{~W} \end{gathered}$	8×21 W	90 ± 15	50 ± 5	E	P	P	BG7	9 to 16	-40 to +85	Yes	4DN 008 768-031 Holder angled at 90°
	$\begin{gathered} 2+1 \\ +1 \times 21 \mathrm{~W} \end{gathered}$	8×21 W	90 ± 15	50 ± 5	E	P	P	BG7	9 to 16	-40 to +85	Yes	4DN 008 768-041 Holder angled at 90°, with vibration damper
	$\begin{gathered} 2+1 \\ +1 \times 18 \mathrm{~W} \end{gathered}$	$8 \times 18 \mathrm{~W}$	90 ± 15	50 ± 5	E	P	P	BG7	9 to 16	-40 to +85	Yes	4DN 008 768-051 Holder angled at 90°, with vibration damper
	$\begin{gathered} 2+1 \\ +1 \times 21 \mathrm{~W} \end{gathered}$	8×21 W	90 ± 30	52.5 ± 22.5	P	P	P	BG7	$\begin{gathered} 10.8 \text { to } \\ 15 \end{gathered}$	-40 to +85	Yes	4DN 996 173-017
	$\begin{gathered} 2 \times 21 \mathrm{~W} \\ +0 \text { to } 5 \mathrm{~W} \end{gathered}$	$\begin{gathered} 4 \times 21 \mathrm{~W} \\ +2 \times 5 \mathrm{~W} \end{gathered}$	87.5 ± 17.5	52.5 ± 7.5	E	-	-	BG10	9 to 16	-40 to +85	Included	4DB 006 716-041

* at room temperature and test voltage

C = Towcar
C2 $=1$ st trailer
C3 $=$ 2nd trailer

Flasher unit 24V, 3-pole/4-pole

[^5]C = Towcar
C2 $=1$ st trailer
C3 $=$ 2nd trailer

Flasher unit 24V, 4-pole/5-pole

[^6]Flasher unit 24V, 6-pole/7-pole

[^7]C = Towcar
C2 $=1$ st trailer
C3 $=2$ nd trailer

Flasher unit 24 V , 11-pole and 12/24 V, 6-pole

* at room temperature and test voltage

C = Towcar
C2 $=1$ st trailer
C3 $=2$ nd trailer

LED flasher unit 12/24V, 3-pole; 12V, 4-pole/5-pole and 24V, 4-pole

[^8]C = Towcar
C2 $=1$ st trailer
$\mathrm{C} 3=2$ nd trailer

Overview of flasher unit technical data

GENERAL AND ELECTRICAL DATA

Rated voltage	
Test voltage	
Test temperature	

Legal regulations for flasher units

HELLA flasher units comply with national and international regulations:
\rightarrow StVZO Article 54 direction indicators
\rightarrow ECE guideline 48 lighting devices
\rightarrow EC Directive 76/756 lighting devices
\rightarrow US Federal Standard FMV88 108 lighting devices
\rightarrow SAE J590 turn signal flashers
\rightarrow SAE J945 vehicle hazard warning signal flashers
\rightarrow EC Directive 72/245 radio interference

LED indicators and failure control from HELLA

Legal requirement in all ECE states

In the case of vehicles approved for use on public roads, the indicators must be monitored: the failure of an indicator must be shown optically or acoustically in the vehicle. This applies to all ECE states in which regulation ECE R 48 is in effect. This means possible indicator failure must be monitored by the vehicle. Manufacturers use different control procedures for this.

The failure controls currently in use cannot detect simple LED lights and indicate a fault. Many HELLA LED indicators have integrated failure control electronics. The indicators are selfmonitoring. When functioning correctly, they create a pulse according to ISO 13207-1 which can be evaluated by the vehicle electronics. If the available vehicle electronics cannot evaluate the pulse themselves, HELLA provides various solutions for evaluating this pulse, shown below.

As soon as one single LED fails, the light can be considered faulty, the impulse is not generated. In this case, for instance, the ballast switches off the bulb simulation and the flasher unit reports the error to the driver.

Safe conversion to LED indicators using HELLA electronics according to ISO 13207-1
As indicators must be checked by law, we recommend operating the lights only in conjunction with a failure control according to ISO 13207-1.

For LED indicators with a control pulse, HELLA offers electronic ballasts which make it possible to display indicator failure for various vehicle assemblies and modifications. This is necessary if the vehicle manufacturer does not guarantee indicator bulb failure control via the vehicle electric system.

There are three different ballasts and several different LED indicators available:

As a new solution, HELLA recommends detecting the electrical pulse directly in the vehicle manufacturer's vehicle electric system. It is merely necessary to integrate the check according to ISO 13207-1. This obviates the need for interim solutions via the indicator control units.

LED light failure control and correct electrical connection

Operation of the LED lamp with alternating voltage or clocked direct voltage is not permitted. The individual light functions may only be operated with a vehicle fuse of max. 3 A .

Due to the low watt output of LED lights, which are distinctly different from a bulb version, problems can arise in bulb failure control when operating traction vehicles. As checking of the indicators is required by law, we recommend operating the light only in conjunction with the indicator control unit, HELLA part no. 5DS 009 552-xxx.

LED indicator control unit

LED flasher unit

Simulation device for cold checking

Vehicle electric system check according to ISO 13207-1

The right solution for your vehicle electronics

UNIVERSAL SOLUTION
for 24 V vehicle electric systems

ISO 13207-1 SOLUTION
for 24 V vehicle electric systems

Solution 1:

Replace the existing indicator unit with an LED indicator unit from HELLA with an ISO pin base

One flasher unit per vehicle required. Any possible combination of bulbs and HELLA LED direction indicators is permitted: from a full package with bulbs through mixed versions to a full package with LED lights. Bulbs or HELLA LED direction indicators are also permitted on trailers.

Solution 2:

Through simulation unit for cold check

One simulation device is required per LED light.

Solution 3:

By LED indicator control unit

Two LED direction indicators can be monitored per vehicle using one simulation device.
(Only one simulation device per vehicle can be used.)

Solution 3:

By LED indicator control unit

Solution 4:

By monitoring in compliance with ISO 13207-1 in the vehicle manufacturer's vehicle electric system.

Solution 4:
Light control unit with integrated check of the failure pulse according to ISO 13207-1

24 V	
Operating voltage	18-32 V
Reverse-polarity protection voltage	-28V
On-board voltage input Flasher unit left / right	24 V
Operating temperature	-40 to $+50^{\circ} \mathrm{C}$
Extended operating temperature*	$-40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
Storage temperature	$-40^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$
With blade terminal sleeves	5DS 009 552-011
For EasyConn connectors	5DS 009 552-001

[^9]In future, vehicle manufacturers' light control units will be able to check the failure pulse in a standardised and unified manner according to ISO 13207-1.

Interim solutions 1 to 3 are therefore unnecessary, as communication takes place directly with the indicators. HELLA recommends this solution.

Since not every vehicle currently has its own vehicle electric system, this solution must be integrated

Solution 3:
Indicator control unit
Universal solution

2BA 959 822-601

2BA 344.200-...

2BA 343 390-...

Explanation and uses

Key components of a wash/wipe interval control unit

Legend

(1) Blade terminal made of E-Cu with tin-plated surface
(2) Base plate
(3) Capacitor
(4) PCB relay

5 SMD components (resistors, diodes etc.)

Functional principle

The wash/wipe interval control unit essentially comprises a pulse generator with a fixed or variable pulse/pause ratio. Every pulse with which the wipe/wash motor is controlled via a relay causes a one-off back-and-forth movement of the windshield wipers. Depending on the design, the length of the wipe pause is 4 s to X s.

The WWI control unit comprises the following:
\rightarrow PCB with electronic components, blade terminals and a PCB relay
\rightarrow Synthetic material housing, sometimes with holder

Similarly to flasher units, the timer is designed as an astable multivibrator in the wipe/wash interval control unit. A failure control stage as required by the flasher system is not needed for the WWI control unit.

HELLA also supplies headlight washer systems which clean the headlights using a spray of high-pressure water. Depending on the variant, the length of the spray varies between 0.4 s and 0.8 s .

Rated voltage

$\rightarrow 12 \mathrm{~V}$: for passenger cars, agricultural and construction machinery etc.
$\rightarrow 24 \mathrm{~V}$: for commercial vehicles, buses, municipal vehicles etc.

Rated load, rated switching current

\rightarrow 3.5 A to 10 A , depending on vehicle type

Contacts and connector configurations

Wash/wipe interval control units

I Intermittent wiping (input)
S, 53 M Wiper motor field winding (output)
T, 86 Wash button (input)
15 Battery +, switched (input)
31 Ground
31b,53S Wiper motor cam switch/ park position/limit switch (input)

S
Headlight cleaning system control unit
P Water pump (output)
$\mathbf{S} \quad$ Actuating switch (input)
Load current +, terminal 15 (input)
Ground
Light (input)

Wash/wipe interval control units 12 V

4 ± 1	1	5 ± 1	10	-	1	9 to 16	-30 to +70	Yes	5WG 002 450-111

4 ± 1	1	5 ± 1	3.5	-	1	9 to 16	-40 to +85	Yes	5WG 002 450-311

6 ± 1	1	6 ± 1	5	-	BG8	11 to 16	-30 to +85	No	5WG 003 620-081
3.9 ± 1	0.8 to 0.4	6.5 ± 1.5	20	10	11	10 to 15	-20 to +60	No	5WG 996 165-001

Release delay, wipe/wash operation
\square Turn-on delay, intermittent operation
\diamond Pause time, intermittent operation

Wash/wipe interval control units 24 V

Headlight cleaning system 12V/24V

0.8 ± 0.04	SW	12	9 to 15	-40 to +90	5WD 005 674-131
0.6 ± 0.06	SW	12	9 to 15	-40 to +90	5WD 005 674-151

0.43 ± 0.02	SW	24	18 to 30	-40 to +90	5WD 003 547-071
0.8 ± 0.04	SW	24	18 to 30	-40 to +90	5WD 005 674-141

Explanation and uses

Key components of a time relay

Legend

(1) Blade terminal made of E -Cu with tin-plated surface

2 Base plate
(3) Potentiometer (for fine adjustment of delay time)

4 DIP switch (for setting the time base)

5 PCB relay

Functional principle

A time relay is a monostable flip-flop with connected relay.

The time relay is available in two variants:
\rightarrow Pick-up delay: the monostable flip-flop is activated by applying a voltage to the device input. Depending on the set time, the relay is then switched on with a delay. After deactivating the input, the relay voltage drops immediately.
\rightarrow Drop-off delay: the relay is switched on immediately by applying a voltage to the input of the monovibrator. After deactivating the input, the relay voltage drops after a predetermined time.

HELLA also supplies time relays with neither pick-up nor drop-off delay. In this case, the output is activated or switched on for a specific period of time.

The delay or turn-on time can be adjusted with a DIP switch and fine-tuned with a potentiometer.

If a more powerful relay is used, higher current strengths or different load types - e.g. inductive, capacitive/lamps - can be easily activated.

Rated voltage

$\rightarrow 12 \mathrm{~V}$: for passenger cars, agricultural and construction machinery etc.
$\rightarrow 24 \mathrm{~V}$: for commercial vehicles, buses, municipal vehicles etc.

Rated load, rated switching current

\rightarrow Up to 20 A , make contact
\rightarrow Up to 10 A , break contact

Contacts and connector configurations

HL	Handbrake control (input)
HK	Handbrake contact (input)
L, 87	Load current, make contact (output)
N	Emergency-off switch (input)
S, 15	Actuating switch (input)
SK	Grounding contact (input)
$\mathbf{3 0}$	Load current + terminal 15 (input)
$\mathbf{3 1}$	Ground
$\mathbf{8 7 a}$	Load current, break contact (output)

Clock relays 12 V

Product photo

Clock relays 24V

0.8 ± 0.2	-	-	5	5	Z5	18 to 32	-40 to +85	No	5HE 009 130-001
1.5 ± 0.5	x	-	3	-	Z4	18 to 32	-40 to +85	No	

0.9 ± 0.09	x	-	10	5	Z	18 to 32	-40 to +85	Included	5HE 996 152-127
0 to 900	-	x	20	10	Z	18 to 32	-25 to +80	Included	5HE 996 152-141
0 to 900	X	-	20	10	z	18 to 32	-25 to +80	Included	5HE 996 152-161
$5 \pm 0,5$	-	x	20	10	z	18 to 32	-25 to +80	Included	5HE 996 152-177

Overview

Product photo	Product description	Available accessories	Part number
	Female connector housing, 5-pole	With pre-fitted cable assembly	8JD 745 801-001
	Female connector housing, 5-pole	Blade terminal sleeves: 8KW 863 904-003, 8KW 863 904-013	8JD 745 801-011
	Cable sachet housing, 6-pin	Blade terminal sleeves: 8KW 744 819-003, 8KW 701 235-..., 8KW 744 820-003	9NH 701 230-001
	Cable sachet housing, 8-pin	Blade terminal sleeves: 8KW 744 819-003, 8KW 701 235-..., 8KW 744 820-003	8JD 008 151-061
	Cable sachet housing, 9-pin, mountable side by side	Blade terminal sleeves: 8KW 744 819-003, 8KW 701 235-..., 8KW 744 820-003	8JA 003 526-001
	Cable sachet housing, 9-pin, mountable side by side	Blade terminal sleeves: 8KW 744 819-003, 8KW 701 235-..., 8KW 744 820-003, 8KW 744 822-003	8JA 183 161-002

Circuit diagrams - electromechanical relays

Pin diagrams - electromechanical relays

A 1

B 1

B 2

B 3

BDR 1

BDR 2

C

C 1
$\begin{array}{llll}-85 \\ -87 a & \mid 87 & \mid 30 \\ -86\end{array}$
C 3

| -2 | | |
| :--- | :--- | :--- | :--- |
| -6 | 15 | 13 |
| -1 | | |

Pin diagrams - flasher units

BG

BG4

BG5

BG9

BG2

BG6

BG10

BG3

BG8

BG12

BG13

Pin diagrams - wash/wipe interval control units
I
11

$\frac{2}{31}$	$\frac{8}{86}$	$\frac{1}{15}$
$\frac{S}{31 b}$	$\frac{1}{15}$	

31	1	86
\bar{y}	\bar{y}	\bar{Z}
15	31 b	S

12

Pin diagrams - clock relays

Z

Z1

Z5

Z4

Z2

Pin diagrams - control units for headlight cleaning systems SW

The new HELLA switch configurator

Q. Coople

HELLA module switch configuration tool
Configure your switches yourself! First, choose between the new waterproof 3100 series (interior and exterior applications) or the 4100 series (interior applications).

You can select any switch functions as well as the operating voltage, combinations of symbols and the corresponding accessories with only a few clicks. They can easily be transferred to a favourites list, printed out or sent as an online request.

Your request will be processed individually with the desired symbol configuration and customer-specific article number on a project-specific basis.

Rocker switch, 3100 series

The new waterproof series of rocker switches for electrical systems. Meets the requirements of protection class IP 68. The lasered symbols are lit by integrated LEDs.

\rightarrow IP 68 according to test standard IEC EN 60529
\rightarrow Extremely reliable in extreme conditions
\rightarrow Ideal for use in agricultural and construction machinery
\rightarrow Wide range of switching functions $12 / 24 \mathrm{~V}$

- Make contact/change-over contact
- Button/latch
- Disable function
- Hazard light switch
\rightarrow Wide range of standard and customer-specific laser symbols
\rightarrow Up to two LED light sources enable direct symbol illumination
\rightarrow Simple to install, directly in the mounting hole or using a modular mounting frame
\rightarrow Display lights in the same design for safety-related feedback

TECHNICAL DATA	
Mounting opening	$21.1 \mathrm{~mm} \times 37.0 \mathrm{~mm}$
Material rocker	PC transparent, painted
Base plate material	PBT
Connecting contacts	$6.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$
Coating of switch contacts	CuZn silver-plated
Light source	Max. 2 LEDs $1 \times$ orientation light, green $1 \times$ function light, red Warning lights available in amber and green
Symbol type	lasered
Design life	$6 \mathrm{~A} / 24 \mathrm{~V}$ at 150,000 switching cycles
Leak tightness	IP 68, IP 66 terminal side
Operating temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Dashboard thickness	For directly installed switches, 2 mm

Switch functions

Latching change-over contact, 1-stage, 2-pole

Switch function-03
with orientation light, with internal function light

Switch function -04
with internal function light, with lock-out

Switch function -08
Hazard light switch, with orientation light, red, with internal function light

Non-latching change-over contact, 1-stage, 1-pole

Switch function -09
with orientation light, with external function light

Latching change-over contact, 2-stage, 1-pole

Switch function -07 with orientation light, with internal function light

Latching change-over contact, 2-stage, 2-pole

Switch function - 11
with orientation light, with external function light stage I: latching stage II: non-latching

Switch function - 15
with orientation light, with external function light switching stage I-0-II

Non-latching change-over contact, 1-stage, 2-pole

Switch function -05
with orientation light, with internal function light

Switch function -06 with internal function light, with lock-out

Non-latching change-over contact, 2-stage, 2-pole

Switch function - 12
with orientation light,
with external function light
Switching stage I-0-II

Latching make contact, 1-stage, 2-pole

Switch function -10
with orientation light with internal function light

Latching make contact, 2-stage, 2-pole

Switch function -02
with orientation light,
with internal function light

Switch function -00
with orientation light, with internal function light

Switch function -01 with internal function light, with lock-out

Switch function - 13
with external function light, $2 x$, green

Switch function - 14
with external function light, 2 x , amber

HELLA KGaA Hueck \& Co.
Rixbecker Straße 75
59552 Lippstadt/Germany Tel.: +49 2941 38-0
Fax: +49 2941 38-7133
E-Mail: info@hella.com
Internet: www.hella.com

HELLA Benelux BV

Celsiusbaan 2, Postbus 1398
3430 BJ Nieuwegein
Nederland
T 030-6095611
F 030-6051677
E nl.info@hella.com
I www.hella.nl
Langlaarsteenweg 168
2630 Aartselaar
België
T 03-887 9721
F 03-887 5618
E be.info@hella.com
I www.hella.be

HELLA CZ, s.r.o.
Revoluční 785
28522 Zruč nad Sázavou
Česká republika
Tel.: (+420) 327536425
$(+420) 606619472$
Fax: (+420) 327536421
Internet: www.hella.cz
e-mail: hella.cz@hella.com
www.facebook.com/hella.czech
© HELLA KGaA Hueck \& Co., Lippstadt
$9 Z 2999$ 135-961 J00845/GR/10.14/1.0
Printed in Germany
Subject to technical and price modifications.

[^0]: Rated switching current (A) at $80^{\circ} \mathrm{C}$ ambient temperature

[^1]: * at room temperature and test voltage

[^2]: * at room temperature and test voltage

[^3]: * at room temperature and test voltage

 C = Towcar
 C2 $=1$ st trailer
 C3 $=$ 2nd trailer

[^4]: * at room temperature and test voltage

 C = Towcar
 C2 $=1$ st trailer
 C3 $=$ 2nd trailer

[^5]: * at room temperature and test voltage

[^6]: * at room temperature and test voltage

 C = Towcar
 C2 $=1$ st trailer
 C3 $=2$ nd trailer

[^7]: at room temperature and test voltage

[^8]: * at room temperature and test voltage

[^9]: * Simulation of the filament bulb is deactivated for
 thermal reasons if the temperature exceeds $50^{\circ} \mathrm{C}$.

